검색결과 리스트
Research에 해당되는 글 50건
- 2015.03.17 To make(generate) trajectory
- 2015.03.17 Orientation interpolation
- 2015.03.16 Kinematic control of Robots
- 2015.03.16 why use smooth trajectory?
- 2015.03.16 path vs trajectory
- 2015.03.12 Why use 9 numbers for rotation? (3 for Euler or R-P-Y)
- 2015.03.12 Comparison of rotational representations
- 2015.03.12 equivalent angle-axis representation of orientation
- 2015.03.12 Orientation representation in n o a ?
- 2015.03.12 Singularity in orientation
글
To make(generate) trajectory
Common technique to generate trajectory in robotics
but it has some performance problems..
more efficient technique to generate trajectory is the trapezoidal profile..
however it has a problem that robot can be unstable because of its discrete acc/deceleration.
(generally, this has lower bandwidth relatively.. it can be ignored)
* Ref :
[1] https://moocs.qut.edu.au/courses/814/learn
'Research > Robotics' 카테고리의 다른 글
Derivative of rotation matrix.. (0) | 2015.03.20 |
---|---|
Einstein's equivalence principle (0) | 2015.03.19 |
Orientation interpolation (0) | 2015.03.17 |
Kinematic control of Robots (0) | 2015.03.16 |
why use smooth trajectory? (0) | 2015.03.16 |
글
Orientation interpolation
linear interpolation 방식으로 position은 간단하게 interpolation할 수 있었으나
orientation의 경우, rotation matrix를 interpolation하면 아래와 같은 문제가 발생한다.
따라서 Euler angle이나 RPY를 interpolation해야 하는데, 이 경우에도 문제는 있다..
바로 아래와 같은 direction problem이다.
그렇다면 우리는 효율적인 orientation interpolation 방법에 대해 궁금해질 차례이다.
아래를 보면 그 해답을 알 수 있다.
* Ref :
[1] https://moocs.qut.edu.au/courses/814/learn
'Research > Robotics' 카테고리의 다른 글
Einstein's equivalence principle (0) | 2015.03.19 |
---|---|
To make(generate) trajectory (0) | 2015.03.17 |
Kinematic control of Robots (0) | 2015.03.16 |
why use smooth trajectory? (0) | 2015.03.16 |
path vs trajectory (0) | 2015.03.16 |
글
Kinematic control of Robots
KINEMATIC control of a robot manipulator consists of solving the control problem in two stages, i.e., the desired task trajectory is transformed via the inverse kinematics into corresponding joint trajectories, which then constitute the reference inputs to some joint space control scheme [1]. This approach differs from operational space control [2] in the sense that manipulator kinematics is handled outside the control loop, thus allowing the problem of kinematic singularities and/or redundancy to be solved separately from the motion control problem. Moreover, most built-in controllers of industrial robots are based on joint servos and, thus, they can be easily embedded into a kinematic control strategy.
* Ref
[1] Fabrizio Caccavale, Student Member, IEEE, Stefano Chiaverini, and Bruno Siciliano, Senior Member, IEEE, Second-Order Kinematic Control of Robot Manipulators with Jacobian Damped LeastSquares Inverse: Theory and Experiments, IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 2, NO. 3, SEPTEMBER 1997.
'Research > Robotics' 카테고리의 다른 글
To make(generate) trajectory (0) | 2015.03.17 |
---|---|
Orientation interpolation (0) | 2015.03.17 |
why use smooth trajectory? (0) | 2015.03.16 |
path vs trajectory (0) | 2015.03.16 |
Why use 9 numbers for rotation? (3 for Euler or R-P-Y) (0) | 2015.03.12 |
글
why use smooth trajectory?
to reduce..
- the peak acceleration on the robot mechanism
- vibration in the structure of the robot
- the size of the motors required to drive the robot
* Ref :
[1] https://moocs.qut.edu.au/courses/814/learn
'Research > Robotics' 카테고리의 다른 글
Orientation interpolation (0) | 2015.03.17 |
---|---|
Kinematic control of Robots (0) | 2015.03.16 |
path vs trajectory (0) | 2015.03.16 |
Why use 9 numbers for rotation? (3 for Euler or R-P-Y) (0) | 2015.03.12 |
Comparison of rotational representations (0) | 2015.03.12 |
글
path vs trajectory
path
a set of points in space
trajectory
a set of points in space and a schedule for reaching each point
* Ref :
[1] https://moocs.qut.edu.au/courses/814/learn
'Research > Robotics' 카테고리의 다른 글
Kinematic control of Robots (0) | 2015.03.16 |
---|---|
why use smooth trajectory? (0) | 2015.03.16 |
Why use 9 numbers for rotation? (3 for Euler or R-P-Y) (0) | 2015.03.12 |
Comparison of rotational representations (0) | 2015.03.12 |
equivalent angle-axis representation of orientation (0) | 2015.03.12 |
글
Why use 9 numbers for rotation? (3 for Euler or R-P-Y)
* Ref :
[1] https://moocs.qut.edu.au/courses/814/learn
'Research > Robotics' 카테고리의 다른 글
why use smooth trajectory? (0) | 2015.03.16 |
---|---|
path vs trajectory (0) | 2015.03.16 |
Comparison of rotational representations (0) | 2015.03.12 |
equivalent angle-axis representation of orientation (0) | 2015.03.12 |
Orientation representation in n o a ? (0) | 2015.03.12 |
글
Comparison of rotational representations
* Ref :
[1] https://moocs.qut.edu.au/courses/814/learn
'Research > Robotics' 카테고리의 다른 글
path vs trajectory (0) | 2015.03.16 |
---|---|
Why use 9 numbers for rotation? (3 for Euler or R-P-Y) (0) | 2015.03.12 |
equivalent angle-axis representation of orientation (0) | 2015.03.12 |
Orientation representation in n o a ? (0) | 2015.03.12 |
Singularity in orientation (0) | 2015.03.12 |
글
equivalent angle-axis representation of orientation
* Ref :
[1] https://moocs.qut.edu.au/courses/814/learn
'Research > Robotics' 카테고리의 다른 글
Why use 9 numbers for rotation? (3 for Euler or R-P-Y) (0) | 2015.03.12 |
---|---|
Comparison of rotational representations (0) | 2015.03.12 |
Orientation representation in n o a ? (0) | 2015.03.12 |
Singularity in orientation (0) | 2015.03.12 |
How many rotational parameters are required for 4D space? (0) | 2015.03.11 |
글
Orientation representation in n o a ?
* Ref :
[1] https://moocs.qut.edu.au/courses/814/learn
'Research > Robotics' 카테고리의 다른 글
Comparison of rotational representations (0) | 2015.03.12 |
---|---|
equivalent angle-axis representation of orientation (0) | 2015.03.12 |
Singularity in orientation (0) | 2015.03.12 |
How many rotational parameters are required for 4D space? (0) | 2015.03.11 |
Euler angles and Cardan angles (0) | 2015.03.11 |
글
Singularity in orientation
A singularity occurs when the middle rotation in the sequence makes the rotation axes of the first and third rotations parallel.
(A singularity in a three-angle sequence is sometimes referred to as gimbal lock.)
Think about the PUMA560 robot whose 4th joint and 6th joint are aligned. If 4th joint increases and 6th joint decreases with same rates at the same time, the orientation of end effector will not be changed.
So, we lose some degree of freedom!
* Ref :
[1] https://moocs.qut.edu.au/courses/814/learn
'Research > Robotics' 카테고리의 다른 글
equivalent angle-axis representation of orientation (0) | 2015.03.12 |
---|---|
Orientation representation in n o a ? (0) | 2015.03.12 |
How many rotational parameters are required for 4D space? (0) | 2015.03.11 |
Euler angles and Cardan angles (0) | 2015.03.11 |
why column vectors of rotation matrix is new axis ? (0) | 2015.03.11 |